CHIRAL TOLUENE-2. α -SULTAM AUXILIARIES: ASYMMETRIC DIELS-ALDER REACTIONS OF N-ENOVL DERIVATIVES

Wolfgang Oppolxer', Martin Wills, Martha J. Kelly, Marcel Signer, Julian Blagg Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Abstract: Asymmetric, R_{m} AlCI_n mediated Diels-Alder reactions of 1,3-dienes to N-enoyl derivatives 4 and 2 of (R) -methyl-, (R,S) -t-butyl-, α , α -dimethylbenzyl-, benzyl and (S) -methyl-toluene-2, α -sultams 3 as well as to Nenoyl derivatives 15 of (R) -2,3-dihydro-3-methylisoindolinone 14 are described.

N-Enoylbornane-10,2-sultams outperform most chiral dienophiles as to their utility for Lewis-Acid mediated asymmetric Diels-Alder reactions. ¹ The postulated involvement of conformationally rigid chelates \underline{A} has been recently supported by an X-ray diffraction analysis of $\Delta (R^2 = CH_3, ML_n = Ticl_4$, Scheme 1). ²

Scheme I

Extension of this concept *to* analogous chelates 8 promised to provide further insight into this type of stereoface direction. To this end we took advantage of the easy access to a range of $C(\alpha)$ -substituted toluene-2, α sultams 3.

Methyl-substituted sultam $2 (R^1 - Me)$ and its antipode are of particular interest being readily available in enantiomerically pure form e.g. by asymmetric hydrogenation of imine 2 (R^1 = Me). ³ Acylation with acryloyl chloride afforded chiral dienophiles 4.4 These underwent smooth [4+2]-cycloadditions to cyclopentadiene, 1,3butadiene and isoprene. Our results are summarized in Scheme 2 and Table 1. 4

Scheme 2

Series			Dienophile 4		Diene 5		Reaction Conditions		Product 6					
				$R1$ Configuration $R3$		Y	ML_n (molequiv)	Temp. [°C]	Time [h]	Yield crude [%]	Ratio endo/ exo	endo cryst cryst. crude [%] [%] [%]	d.e. Yield d.e.	
	1	2	Me	\boldsymbol{R}	н	CH ₂	none	r.t.		95	96:4	62		
	2	2	Me	\boldsymbol{R}	\bf{H}	CH ₂	$BF_1.Et_2O(2.0)$	-98		30	95:5	51		
	3	a	Me	R	н	CH ₂	nBu ₂ BOTf (2.0)	-78		44	>99:1	52		
	4	2	Me	R	н	CH ₂	$SnCl4$ (2.0)	-78		91	>99:1	65		
	5	a	Me	\pmb{R}	H	CH ₂	TiCl ₄ (1.0)	-98		25	93:7	11		
	6	1	Me	R	н	CH ₂	EtAlCl ₂ (2.0)	-78		94	>99:1	91		
	7	\blacksquare	Me	R	н	CH ₂	Et ₂ AICI (2.0)	-78		93	>99:1	94		
	8	a	Me	R	н	CH ₂	$Me2AICI$ (2.0)	-98	0.2	97	>99:1	93	83	>99
	9	b	tBu	RS	н	CH ₂	none	r.t.	24	75	80:20	51		
10		b	tBu	RS	H	CH ₂	EtAlCl ₂ (1.5)	-78	0.2	-	95:5	77		
11		ь	t Bu	RS	н	CH ₂	EtAlCl ₂ (1.5)	-98	0.25	61	96:4	90		
12		c	CMe ₂ PhRS		н	CH ₂	EtAlCl ₂ (1.5)	-98	0.25	86	95:5	96		
13		d	CH ₂ Ph	RS	н	CH ₂	Me ₂ AICI (2.0)	-78	2	~99	96:4	81		
14		d	$CH2Ph$ RS		н	CH ₂	$Me2AICI$ (2.0)	-98	2	85	97:3	85		
15		e	Me	R	H	H ₂	EtAlCl ₂ (1.6)	-78	18	79		90		
16		f	Me	R	Me	H ₂	Me ₂ AICI (1.6)	-78	7	87		92		

Table 1: Asymmetric Diels-Alder Reactions of N-Acryloyl-toluene-2, α -sultams $\underline{4} + \underline{5} \rightarrow \underline{6}$

First we studied the influence of various Lewis acids on the addition of cyclopentadiene to N -acryloylsultam $4a$ $(R¹ = Me)$. With (mono-coordinating) boron Lewis acids only modest inductions were observed, approaching those of the non-catalyzed reactions (entries 2,3,1). SnCl₄ catalysis, and, even more surprisingly, TiCl₄-catalysis furnished adduct 6a in low diastereomeric excesses of 65% and 11% d.e., respectively (entries 4,5). However, on employing 2 molequiv of EtAlCl₂, Et₂AlCl or Me₂AlCl at -78° C we obtained cycloaddition product 6a without a trace of its exo-isomer in 91 to 94% d.e. (HPLC, entries 6-8). Crystallization (1x hexane/CH₂Cl₂) afforded 6a in >99% d.e. (83% yield from 4a). Entry 8 thus shows a chiral efficiency equal to (or slightly better than) those observed with TiCl₄- or AlL_n-coordinated N-acryloylbornane-10,2-sultam \triangle (R² = H). ^{1a}

To conveniently explore the influence of other auxiliary substitutents R¹, racemic t-butyl-, $4b$ (R¹ = t-Bu), ^{4,5} α , α -dimethylbenzyl-, 4,6 $\frac{4C}{\mu}$ (R¹ = CMe₂Ph) and benzylsultam $\frac{4d}{\mu}$ (R¹ = CH₂Ph) 4,5 were subjected to similar reaction conditions. *Endo/exo-* and diastereomer ratios ⁴ of resulting racemates $6b$, $6c$ and $6d$ show that only the α , α -dimethylbenzyl group in $\frac{4c}{3}$ exerts a stereo-directing bias comparable to that of the methyl group (entries 12, 6). In contrast to our expectations, the t-butyl- and benzyl derivatives reacted in a less selective manner than their methyl analogue, 7

Diels-Alder addition of butadiene and isoprene (-78°C, entries 15, 16) to enantiomerically pure (R) -N-acryloylmethylsultam 4 (\mathbb{R}^1 = Me) proceeded again with 90% and 92% diastereoselectivity *i.e.* as high as the bornanesultam standard. ^{1a}

 $[4+2]$ - Cycloadditions of (E) -N-crotonylsultams $2g$, $2h$ and $2i$ to cyclopentadiene (Scheme 3, Table 2) proceeded more slowly (requiring 0°C with dienophiles 9h and 9i) and were less selective than those of the bornanesultam reference (93% d.e.). ^{la} However, crystallization of crude <u>10g</u> (hexane/CH₂Cl₂) raised its diastereomeric purity to >99% d.e. (58% yield from 9g, entry 17).

Scheme 3

Table 2: Asymmetric Diels-Alder Reactions of N-Crotonyl-toluene-2, α -sultams $9 \rightarrow 10$

Removal of the methylsultam moiety from products $6a$, $6e$, $6f$ or $10g$ using LiOH/H₂O₂/aq. THF ⁸ or LiAlH₄ ¹ furnished smoothly carboxylic acids 7₈, ⁴ 7^e ⁴ and 7^f ⁴ or alcohols $\frac{8a}{a}$ ⁴ and 12^g, ⁴ easily separable from recovered auxiliary $3 (R^1 \approx Me)$.

Since chelates such as B involving a SO₂-Lewis base are relatively unusual ² we replaced the SO₂- by a C=O group and investigated isoindolinone 14 as a potential dienophile auxiliary (Scheme 4). ⁷

Scheme 4

Successive treatment of (R)-N-pivaloylamide 13^{3} with n-BuLi/t-BuLi, 3,9 diethylcarbonate and water afforded (R)-isoindolinone 14 ⁴ in 26% yield. Its N-enoyl derivatives 15⁴ were reacted with cyclopentadiene in the presence of Me₂AlCl (2 molequiv, CH₂Cl₂, 16 h, -78°C) to give adducts 16⁴ with excellent endo/exo-preference but only modest π -face selectivity (crude 16, R = H: 62% yield, endo/exo-ratio = 98.8/0.2, 66% d.e.; crude 16, R = Me: 57% yield, endo/exo-ratio = $97.4/2.6$, 72% d.e.).

We thus conclude that various chiral sultams may serve as advantageous stereoface-directing dienophile auxiliaries in Lewis-acid catalyzed Diels-Alder reactions. Asymmetric alkylations, acylations and aldolizations of toluenesultam-derived "enolates" are described in the following communication.

5018

Acknowledgements: Financial support of this work by the *Swiss National Science Foundation, Sandoz Ltd.*, Basel and *Givaudan SA*, Vernier, is gratefully acknowledged. We are grateful to Mr. *J.P. Saulnier*, Mr. *A. Pinto* and Mrs. C. Clement for NMR and MS measurements. We thank the Royal Society, London for the award of European Fellowships to J. B. and M. W..

REFERENCES AND NOTES

- 1) a) W. Oppolzer, C. Chapuis, G. Bernardinelli, *Helv. Chim. Acta* 1984, 67, 1397; b) M. Vandewalle, J. Van der Eycken, W. Oppolzer, C. Vullioud, *Tetrahedron, J.fjj& 42, 4035; c) W.* Oppolzer, D. Dupuis, *Tetrahedron Lett.* 1985, 26, 5437; d) W. Oppolzer, D. Dupuis, G. Poli, T.M. Raynham, G. Bernardinelli, *ibid.*, 1988, 29, 5885; e) A.B. Smith, III, K.J. Hale, L.M. Laakso, K. Chen, A. Riéra, *ibid.*, 1989, 30, 6963; f) Reviews: W. Oppolzer, *Tetrahedron 1482, 43,* 1969; Erratum *ibid.* p. *4057;* W. Oppolzer, *Pure & Appl. Chem. Q&&, 60, 39; idem., ibid.* 1990, 62, in press.
- *2)* W. Oppolzer, I. Rodriguez, J. Blagg, G. Bernardinelli, *Helv. Chim. Acta J.9&9, 72, 123.*
- 3) W. Oppolzer, M. Wills, C. Starkemann, G. Bernardinelli, *Tetrahedron Lett.* 1990, 31, in press.
- 4) All new compounds were characterized by IR, ^{1H}-NMR, ¹³C-NMR and MS. 6) Melting points($^{\circ}$ C)= $\frac{4a}{2}$: 102-104; (±)-4b:121-123; (±)-4c: 100-103; (±)-4d: 142; 6a: 167-169; 9g: 135-136; (±)-9h: 84-85; (±)-9i: 147-149; 10g: 116-117; 15, R=H: 66-68; 15, R=Me: 58-60. [a]D values, (20° C, solvent, c = g/100 ml) = $4a$: -17.8 (CH₂Cl₂, 0.27) $4z$ +28.9 (EtOH, 0.60); $6a$ -187.3 (CH₂Cl₂, 0.275); $7a$ -68.6 (CHCl₃, 0.53); $7f$ -68.6 (CHCl₃, 0.525); a ² -82.2 (EtOH, 0.53); $9g: +28.9$ (EtOH, 0.60), $10g: +172.6$ (CHCl₃, 0.475); $12g$ (from crude 10): +47.5 (CHCl₃, 0.23); 15, R=H: -88.0 (CH₂Cl₂, 0.23), 15, R=Me: -110.3 (23°C, EtOH, 0.2); 17 (from crude 16, R = H): -60 (EtOH, 0.275); 17 (from crude 16, R = Me): -56 (EtOH, 0.3).

The following procedures are representative: *Enoylsultams: 3*/NaH/enoyl chloride ¹ or: Acryloyl chloride (348 mg, 3.85 mmol) was added to a solution of (R) -sultam $\frac{3a}{1600}$ mg, 3.21 mmol) and NEt₃ (389 mg, 3.85 mmol) in CH₂Cl₂ (20 ml) at 0°C under argon. Stirring at 0°C for 1 h, addition of water (20 ml), extraction of the aq. phase with CH2Cl2, drying and evaporation of the combined organic phases and crystallization of the residue from hexane/CH₂Cl₂ afforded pure 4a (505 mg, 66%). *Diels-Alder reaction*: 1 M Me₂AlCl (3.2 ml in CH₂Cl₂) was added over $\overline{1}$ min. to a mixture of acryloylsultam $\frac{4a}{380}$ mg, 1.6 mmol) and cyclopentadiene (1.0 g, 15.1 mmol) in CH₂Cl₂ (5 ml) at -98°C. Stirring for 10 min. at -98°C, addition of sat. aq. NH₄Cl, extraction with CH_2Cl_2 , drying and evaporation of the organic layer, FC (SiO₂, hexane/EtOAc) and crystallization afforded pure 6a (399 mg, 83%). *Saponification*: 6e (17 mg, 0.058 mmol), 30% aq. H₂O₂ (34 μ l) and LiOH (2.6 mg) were stirred in THF/H₂O 3:1 (1 ml) at 0°C for 2 h. Addition of sat. aq. Na₂SO₃ (0.5 ml), stirring for 10 min, basification to pH = 10 (aq. NaHCO3), evaporation of THF, extraction with CH_2Cl_2 and evaporation of extracts gave sultam $3a$ (9.9 mg, 92%). Acidification of the aq. phase (pH <1), extraction (EtOAc) and evaporation of the extracts yielded acid 7e (6.8 mg, 93%). *Diastereoisomer ratios* of products 6 and 10 were determined by HPLC comparison with reference samples obtained by acylation of sultams 2 with *(+)-endo/exo* mixtures of the corresponding carboxylic acid chloride. GC-analysis of alcohols obtained by reduction (LiAlH₄) of crude $6, 10$ or 16 confirmed the *endo/exo* ratios. The *absolute con/iguration(s* or <u>16</u> confirmed the *endo/exo* ratios. The *absolute configuration(s)* of the induced stereogenic center(s) was
(were) determined *via* comparison of [a]_D values (7f, ¹⁰ 8a, ^{1a} 12g ^{1a}) or the HPLC of (S)-1-(1-
na $a \frac{12g}{1-1}$ or the HPLC of $(S)-1-1$ naphthyl)ethylamides derived from acids **7e** and **7**f ^{1a}. The sense of induction obtained with racemic enoylsultams (entries 9-14, 18, 19) is tentatively assigned.

- 5) $1 \rightarrow 2b$ [c.f. ¹¹, tBuLi (61%, m.p. 128-130°C)] $\rightarrow 3b$ [c.f. ¹², NaBH₄ (91%, m.p. 141.5-142.5°C)]; $1 \rightarrow 2d$ $[PhCH₂MgBr (24%, m.p. 129-131°C)] \rightarrow 3d [NaBH₄ (75%, m.p. 135-137°C)].$
- 6) Imine & **(m.p.** 189-19l'C) was prepared by successive treatment of N-t-butylbenzenesulfonamide with n-BuLi (2.1 molequiv, THF, $0^{\circ}C$, 5 min \rightarrow r.t., 2 h), α , α -dimethylbenzylnitrile ($0^{\circ}C$, 5 min \rightarrow r.t. 3.5 h) giving an aminosuliam (70%) which on heating in polyphosphoric acid (80°C, 0.5 h) gave $2c$ (70%). Reduction of $2c$ with NaBH₄ provided $3c$ (94%, m.p. 159-165°C).
- 7) Asymmetric Diels-Alder additions of 1,3-dienes to chiral N-enoyloxazolidinones have been ascribed to involve chelation of two carbonyl groups. An oxazolidinone-benzyl substituent showed a face directing bias superior to a methyl group: D.A. Evans, K.T. Chapman, J. Bisaha. J. Am. Chem. Soc. 1988 , 110 , 1238.
- 8) W. Oppolzer, A.J. Kingma, *Helv. Chim. Acta* 1989, 72, 1337; W. Oppolzer, J. Blagg, I. Rodriguez, E. Walther, J. Am. Chem. Soc. 1990, 112, 2767.
- 9) Ortho-Deprotonation of N-pivaloylbenzylamines: ref 2 ; G. Simig, M. Schlosser, *Tetrahedron Lett.* 1988, 29, 4277; J. Barluenga, F.J. Fananas, F. Foubelo, M. Yus, *ibid.*, 1988, 29, 4859.
- 10) J.A. Berson, J.S. Walia, A. Remanick, S. Suzuki, P. Reynolds-Warnhoff, D. Willner J. Am. Chem. Soc. 1961, *83, 3986.*
- 11) R.A. Abramovitch. EM. Smith, M. Humber, B. Purtschert. P. C. Srinivasan, G. M. Singer, J. *Chem. Sot. Perkin Trans 1. 1974, 2589,*
- 12) **H. Teeninga, J.B.F.N. Engberts, J. Org. Chem. 1983, 48, 537.**

(Received in Gemmny *2 July 1990)*