CHIRAL TOLUENE-2,α-SULTAM AUXILIARIES: ASYMMETRIC DIELS-ALDER REACTIONS OF N-ENOYL DERIVATIVES

Wolfgang Oppolzer^{*}, Martin Wills, Martha J. Kelly, Marcel Signer, Julian Blagg Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

<u>Abstract</u>: Asymmetric, R_mAlCl_n mediated Diels-Alder reactions of 1,3-dienes to N-enoyl derivatives 4 and 9 of (R)-methyl-, (R,S)-t-butyl-, α,α -dimethylbenzyl-, benzyl and (S)-methyl-toluene-2, α -sultams 3 as well as to N-enoyl derivatives 15 of (R)-2,3-dihydro-3-methylisoindolinone 14 are described.

N-Enoylbornane-10,2-sultams outperform most chiral dienophiles as to their utility for Lewis-Acid mediated asymmetric Diels-Alder reactions. ¹ The postulated involvement of conformationally rigid chelates \underline{A} has been recently supported by an X-ray diffraction analysis of \underline{A} (R² = CH₃, ML_n = TiCl₄, Scheme 1). ²

Scheme 1

Extension of this concept to analogous chelates <u>B</u> promised to provide further insight into this type of stereoface direction. To this end we took advantage of the easy access to a range of $C(\alpha)$ -substituted toluene-2, α -sultams <u>3</u>.

Methyl-substituted sultam $3 (R^1 = Me)$ and its antipode are of particular interest being readily available in enantiomerically pure form *e.g.* by asymmetric hydrogenation of imine $2 (R^1 = Me)$. ³ Acylation with acryloyl chloride afforded chiral dienophiles 4. ⁴ These underwent smooth [4+2]-cycloadditions to cyclopentadiene, 1,3-butadiene and isoprene. Our results are summarized in Scheme 2 and Table 1. ⁴

Scheme 2

Series		ies	Dienophile <u>4</u>		Diene <u>5</u>		Reaction Conditions		Product <u>6</u>					
			R ¹ Con	figuration	R ³	Y	ML _n (molequiv)	Temp. [°C]	Time [h]	Yield crude [%]	Ratio endo/ exo	d.e. endo e crude [%]	Yield cryst ([%]	d.e. xyst. [%]
	1		Ме	R	H	CH ₂	none	r.t.		95	96:4	62		
	2	a	Ме	R	н	CH ₂	BF3.Et2O (2.0)	-98		30	95:5	51		
	3	a	Ме	R	н	CH ₂	nBu ₂ BOTf (2.0)	-78		44	>99:1	52		
	4	a	Me	R	н	CH ₂	SnCl ₄ (2.0)	-78		91	>99:1	65		
	5	a	Me	R	н	CH ₂	TiCl ₄ (1.0)	-98		25	93:7	11		
	6	8	Me	R	н	CH ₂	EtAlCl ₂ (2.0)	-78		94	>99: 1	91		
	7	a	Me	R	н	CH ₂	Et ₂ AICI (2.0)	-78		93	>99: 1	94		
	8	a	Ме	R	н	CH ₂	Me ₂ AlCl (2.0)	-98	0.2	97	>99: 1	93	83	>99
	9	Ь	tBu	RS	н	CH ₂	none	r.t.	24	75	80:20	51		
1	0	b	<i>t</i> Bu	RS	н	CH ₂	EtAlCl ₂ (1.5)	-78	0.2	-	95:5	77		
1	1	b	tBu	RS	н	CH ₂	EtAlCl ₂ (1.5)	-98	0.25	61	96:4	90		
1	2	с	CMe ₂ Ph	RS	н	CH ₂	$EtAlCl_2$ (1.5)	-98	0.25	86	95:5	96		
1	3	d	CH ₂ Ph	RS	н	CH ₂	Me ₂ AICI (2.0)	-78	2	~99	96:4	81		
_1	4	d	CH ₂ Ph	RS	Н	СH ₂	Me ₂ AICI (2.0)	-98	2	85	97:3	85		
1	5	e	Ме	R	н	н2	EtAlCl ₂ (1.6)	-78	18	7 9	-	90		
1	6	f	Ме	R	Ме	н2	Me ₂ AlCl (1.6)	-78	7	87	-	92		

Table 1 : Asymmetric Diels-Alder Reactions of N-Acryloyl-toluene-2, α -sultams $4 + 5 \rightarrow 6$

First we studied the influence of various Lewis acids on the addition of cyclopentadiene to N-acryloylsultam 4a (R¹ = Me). With (mono-coordinating) boron Lewis acids only modest inductions were observed, approaching those of the non-catalyzed reactions (entries 2,3,1). SnCl₄ catalysis, and, even more surprisingly, TiCl₄-catalysis furnished adduct <u>6a</u> in low diastereomeric excesses of 65% and 11% d.e., respectively (entries 4,5). However, on employing 2 molequiv of EtAlCl₂, Et₂AlCl or Me₂AlCl at -78° C we obtained cycloaddition product <u>6a</u> without a trace of its *exo*-isomer in 91 to 94% d.e. (HPLC, entries 6-8). Crystallization (1x hexane/CH₂Cl₂) afforded <u>6a</u> in >99% d.e. (83% yield from <u>4a</u>). Entry 8 thus shows a chiral efficiency equal to (or slightly better than) those observed with TiCl₄- or AlL_n-coordinated N-acryloylbornane-10,2-sultam <u>A</u> (R² = H). ^{1a}

To conveniently explore the influence of other auxiliary substitutents R¹, racemic *t*-butyl-, <u>4b</u> (R¹ = *t*-Bu), ^{4,5} α, α -dimethylbenzyl-, <u>4.6</u> <u>4c</u> (R¹ = CMe₂Ph) and benzylsultam <u>4d</u> (R¹ = CH₂Ph) <u>4,5</u> were subjected to similar reaction conditions. *Endo/exo-* and diastereomer ratios ⁴ of resulting racemates <u>6b</u>, <u>6c</u> and <u>6d</u> show that only the α, α -dimethylbenzyl group in <u>4c</u> exerts a stereo-directing bias comparable to that of the methyl group (entries 12, 6). In contrast to our expectations, the *t*-butyl- and benzyl derivatives reacted in a less selective manner than their methyl analogue. ⁷

Diels-Alder addition of butadiene and isoprene (-78°C, entries 15, 16) to enantiomerically pure (R)-N-acryloylmethylsultam <u>4</u> (R¹ = Me) proceeded again with 90% and 92% diastereoselectivity *i.e.* as high as the bornanesultam standard. ^{1a}

[4+2]- Cycloadditions of (E)-N-crotonylsultams <u>9g</u>, <u>9h</u> and <u>9i</u> to cyclopentadiene (Scheme 3, Table 2) proceeded more slowly (requiring 0°C with dienophiles <u>9h</u> and <u>9i</u>) and were less selective than those of the bornanesultam reference (93% d.e.). ^{1a} However, crystallization of crude <u>10g</u> (hexane/CH₂Cl₂) raised its diastereomeric purity to >99% d.e. (58% yield from <u>9g</u>, entry 17). Scheme 3

Table 2: Asymmetric Diels-Alder Reactions of N-Crotonyl-toluene-2, α -sultams $2 \rightarrow 10$

Series		Dienophile <u>9</u>		Reaction Conditions			Pro	duct <u>10</u>			
		R ¹ C	onfiguration	ML _n (molequiv)	Temp. [°C]	Time [h]	Yield crude [%]	Ratio endo/ exo	d.e. endo crude[%]	Yield cryst [%]	d.e. cryst. [%]
17	g	Ме	S	Me ₂ AICI (2.0)	-78	24	74	97:3	59	58	>99
18	h	tBu	RS	Me2AICI (2.0)	0	15	84	85:15	74		
19	i	CH ₂ Pl	n RS	Me2AICI (2.0)	0	15	86	90:10	66		

Removal of the methylsultam moiety from products <u>6a</u>, <u>6e</u>, <u>6f</u> or <u>10g</u> using LiOH/H₂O₂/aq. THF ⁸ or LiAlH₄ ¹ furnished smoothly carboxylic acids <u>7a</u>, ⁴ <u>7e</u> ⁴ and <u>7f</u> ⁴ or alcohols <u>8a</u> ⁴ and <u>12g</u>, ⁴ easily separable from recovered auxiliary <u>3</u> (R¹ = Me).

Since chelates such as <u>B</u> involving a SO₂-Lewis base are relatively unusual ² we replaced the SO₂- by a C=O group and investigated isoindolinone <u>14</u> as a potential dienophile auxiliary (Scheme 4). ⁷

Scheme 4

Successive treatment of (R)-N-pivaloylamide 13 ³ with n-BuLi/t-BuLi, ^{3,9} diethylcarbonate and water afforded (R)-isoindolinone 14 ⁴ in 26% yield. Its N-enoyl derivatives 15 ⁴ were reacted with cyclopentadiene in the presence of Me₂AlCl (2 molequiv, CH₂Cl₂, 16 h, -78°C) to give adducts 16 ⁴ with excellent *endo/exo*-preference but only modest π -face selectivity (crude 16, R = H: 62% yield, *endo/exo*-ratio = 98.8/0.2, 66% d.e.; crude 16, R = Me: 57% yield, *endo/exo*-ratio = 97.4/2.6, 72% d.e.).

We thus conclude that various chiral sultams may serve as advantageous stereoface-directing dienophile auxiliaries in Lewis-acid catalyzed Diels-Alder reactions. Asymmetric alkylations, acylations and aldolizations of toluenesultam-derived "enolates" are described in the following communication. Acknowledgements: Financial support of this work by the Swiss National Science Foundation, Sandoz Ltd., Basel and Givaudan SA, Vernier, is gratefully acknowledged. We are grateful to Mr. J.P. Saulnier, Mr. A. Pinto and Mrs. C. Clément for NMR and MS measurements. We thank the Royal Society, London for the award of European Fellowships to J. B. and M. W..

REFERENCES AND NOTES

- a) W. Oppolzer, C. Chapuis, G. Bernardinelli, *Helv. Chim. Acta* <u>1984</u>, 67, 1397; b) M. Vandewalle, J. Van der Eycken, W. Oppolzer, C. Vullioud, *Tetrahedron*, <u>1986</u>, 42, 4035; c) W. Oppolzer, D. Dupuis, *Tetrahedron Lett.* <u>1985</u>, 26, 5437; d) W. Oppolzer, D. Dupuis, G. Poli, T.M. Raynham, G. Bernardinelli, *ibid.*, <u>1988</u>, 29, 5885; e) A.B. Smith, III, K.J. Hale, L.M. Laakso, K. Chen, A. Riéra, *ibid.*, <u>1989</u>, 30, 6963; f) Reviews: W. Oppolzer, *Tetrahedron* <u>1987</u>, 43, 1969; Erratum *ibid.* p. 4057; W. Oppolzer, *Pure & Appl. Chem.* <u>1988</u>, 60, 39; *idem.*, *ibid.* <u>1990</u>, 62, in press.
- 2) W. Oppolzer, I. Rodriguez, J. Blagg, G. Bernardinelli, Helv. Chim. Acta 1989, 72, 123.
- 3) W. Oppolzer, M. Wills, C. Starkemann, G. Bernardinelli, Tetrahedron Lett. 1990, 31, in press.
- 4) All new compounds were characterized by IR, ^{1H}-NMR, ¹³C-NMR and MS. 6) Melting points(°C)= $4\underline{a}$: 102-104; (±)- $4\underline{b}$:121-123; (±)- $4\underline{c}$: 100-103; (±)- $4\underline{d}$: 142; $\underline{6}\underline{a}$: 167-169; $\underline{9}\underline{c}$: 135-136; (±)- $\underline{9}\underline{h}$: 84-85; (±)- $\underline{9}\underline{i}$: 147-149; $\underline{10}\underline{c}$: 116-117; <u>15</u>, R=H: 66-68; <u>15</u>, R=Me: 58-60. [α]_D values, (20° C, solvent, c = g/100 ml) = $4\underline{a}$: -17.8 (CH₂Cl₂, 0.27) $4\underline{e}$: +28.9 (EtOH, 0.60); $\underline{6}\underline{a}$: -187.3 (CH₂Cl₂, 0.275); <u>7a</u>: -68.6 (CHCl₃, 0.53); <u>7f</u>: -68.6 (CHCl₃, 0.525); <u>8a</u>: -82.2 (EtOH, 0.53); <u>9g</u>: +28.9 (EtOH, 0.60); <u>10g</u>: +172.6 (CHCl₃, 0.475); <u>12g</u> (from crude <u>10</u>): +47.5 (CHCl₃, 0.23); <u>15</u>, R=H: -88.0 (CH₂Cl₂, 0.23), <u>15</u>, R=Me: -110.3 (23°C, EtOH, 0.2); <u>17</u> (from crude <u>16</u>, R = H): -60 (EtOH, 0.275); <u>17</u> (from crude <u>16</u>, R = Me): -56 (EtOH, 0.3).

The following procedures are representative: Enoylsultams: 3/NaH/enoyl chloride 1 or: Acryloyl chloride (348 mg, 3.85 mmol) was added to a solution of (R)-sultam <u>3a</u> (600 mg, 3.21 mmol) and NEt₃ (389 mg, 3.85 mmol) in CH₂Cl₂ (20 ml) at 0°C under argon. Stirring at 0°C for 1 h, addition of water (20 ml), extraction of the aq. phase with CH₂Cl₂, drying and evaporation of the combined organic phases and crystallization of the residue from hexane/CH2Cl2 afforded pure 4a (505 mg, 66%). Diels-Alder reaction: 1 M Me2AlCl (3.2 ml in CH2Cl2) was added over 1 min. to a mixture of acryloylsultam 4a (380 mg, 1.6 mmol) and cyclopentadiene (1.0 g, 15.1 mmol) in CH₂Cl₂ (5 ml) at -98°C. Stirring for 10 min. at -98°C, addition of sat. aq. NH₄Cl, extraction with CH₂Cl₂, drying and evaporation of the organic layer, FC (SiO₂, hexane/EtOAc) and crystallization afforded pure 6a (399 mg, 83%). Saponification: 6e (17 mg, 0.058 mmol), 30% aq. H₂O₂ (34 µl) and LiOH (2.6 mg) were stirred in THF/H2O 3:1 (1 ml) at 0°C for 2 h. Addition of sat. aq. Na2SO3 (0.5 ml), stirring for 10 min, basification to pH = 10 (aq. NaHCO₃), evaporation of THF, extraction with CH_2Cl_2 and evaporation of extracts gave sultam 3a (9.9 mg, 92%). Acidification of the aq. phase (pH <1), extraction (EtOAc) and evaporation of the extracts yielded acid 7e (6.8 mg, 93%). Diastereoisomer ratios of products 6 and 10 were determined by HPLC comparison with reference samples obtained by acylation of sultams $\underline{3}$ with (±)-endo/exo mixtures of the corresponding carboxylic acid chloride. GC-analysis of alcohols obtained by reduction (LiAlH₄) of crude $\underline{6}$, <u>10</u> or <u>16</u> confirmed the *endo/exo* ratios. The *absolute configuration(s)* of the induced stereogenic center(s) was (were) determined via comparison of $[\alpha]_D$ values (<u>71</u>, 10 <u>8a</u>, 1a <u>12g</u> 1a) or the HPLC of (S)-1-(1-naphthyl)ethylamides derived from acids <u>7e</u> and <u>7f</u> 1a. The sense of induction obtained with racemic encylsultams (entries 9-14, 18, 19) is tentatively assigned.

- 5) <u>1</u> \rightarrow <u>2b</u> [c.f. ¹¹, *t*BuLi (61%, m.p. 128-130°C)] \rightarrow <u>3b</u> [c.f. ¹², NaBH₄ (91%, m.p. 141.5-142.5°C)]; <u>1</u> \rightarrow <u>2d</u> [PhCH₂MgBr (24%, m.p. 129-131°C)] \rightarrow <u>3d</u> [NaBH₄ (75%, m.p. 135-137°C)].
- 6) Imine 2c (m.p. 189-191°C) was prepared by successive treatment of N-t-butylbenzenesulfonamide with n-BuLi (2.1 molequiv, THF, 0°C, 5 min → r.t., 2 h), α,α-dimethylbenzylnitrile (0°C, 5 min → r.t. 3.5 h) giving an aminosultam (70%) which on heating in polyphosphoric acid (80°C, 0.5 h) gave 2c (70%). Reduction of 2c with NaBH₄ provided 3c (94%, m.p. 159-165°C).
- Asymmetric Diels-Alder additions of 1,3-dienes to chiral N-enoyloxazolidinones have been ascribed to involve chelation of two carbonyl groups. An oxazolidinone-benzyl substituent showed a face directing bias <u>superior</u> to a methyl group: D.A. Evans, K.T. Chapman, J. Bisaha. J. Am. Chem. Soc. <u>1988</u>, 110, 1238.
- W. Oppolzer, A.J. Kingma, Helv. Chim. Acta <u>1989</u>, 72, 1337; W. Oppolzer, J. Blagg, I. Rodriguez, E. Walther, J. Am. Chem. Soc. <u>1990</u>, 112, 2767.
- Ortho-Deprotonation of N-pivaloylbenzylamines: ref ²; G. Simig, M. Schlosser, Tetrahedron Lett. <u>1988</u>, 29, 4277; J. Barluenga, F.J. Fananas, F. Foubelo, M. Yus, *ibid.*, <u>1988</u>, 29, 4859.
- J.A. Berson, J.S. Walia, A. Remanick, S. Suzuki, P. Reynolds-Warnhoff, D. Willner J. Am. Chem. Soc. <u>1961</u>, 83, 3986.
- 11) R.A. Abramovitch, E.M. Smith, M. Humber, B. Purtschert, P. C. Srinivasan, G. M. Singer, J. Chem. Soc. Perkin Trans 1, <u>1974</u>, 2589.
- 12) H. Teeninga, J.B.F.N. Engberts, J. Org. Chem. 1983, 48, 537.

(Received in Germany 2 July 1990)